Papers
Topics
Authors
Recent
Search
2000 character limit reached

Metric Learning for Session-based Recommendations

Published 7 Jan 2021 in cs.IR and cs.LG | (2101.02655v1)

Abstract: Session-based recommenders, used for making predictions out of users' uninterrupted sequences of actions, are attractive for many applications. Here, for this task we propose using metric learning, where a common embedding space for sessions and items is created, and distance measures dissimilarity between the provided sequence of users' events and the next action. We discuss and compare metric learning approaches to commonly used learning-to-rank methods, where some synergies exist. We propose a simple architecture for problem analysis and demonstrate that neither extensively big nor deep architectures are necessary in order to outperform existing methods. The experimental results against strong baselines on four datasets are provided with an ablation study.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.