Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Metric Learning for Session-based Recommendations (2101.02655v1)

Published 7 Jan 2021 in cs.IR and cs.LG

Abstract: Session-based recommenders, used for making predictions out of users' uninterrupted sequences of actions, are attractive for many applications. Here, for this task we propose using metric learning, where a common embedding space for sessions and items is created, and distance measures dissimilarity between the provided sequence of users' events and the next action. We discuss and compare metric learning approaches to commonly used learning-to-rank methods, where some synergies exist. We propose a simple architecture for problem analysis and demonstrate that neither extensively big nor deep architectures are necessary in order to outperform existing methods. The experimental results against strong baselines on four datasets are provided with an ablation study.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com