Papers
Topics
Authors
Recent
Search
2000 character limit reached

LSSD: a Controlled Large JPEG Image Database for Deep-Learning-based Steganalysis "into the Wild"

Published 5 Jan 2021 in cs.CR | (2101.01495v1)

Abstract: For many years, the image databases used in steganalysis have been relatively small, i.e. about ten thousand images. This limits the diversity of images and thus prevents large-scale analysis of steganalysis algorithms. In this paper, we describe a large JPEG database composed of 2 million colour and grey-scale images. This database, named LSSD for Large Scale Steganalysis Database, was obtained thanks to the intensive use of \enquote{controlled} development procedures. LSSD has been made publicly available, and we aspire it could be used by the steganalysis community for large-scale experiments. We introduce the pipeline used for building various image database versions. We detail the general methodology that can be used to redevelop the entire database and increase even more the diversity. We also discuss computational cost and storage cost in order to develop images.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.