Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Optimize Under Constraints with Unsupervised Deep Neural Networks (2101.00744v1)

Published 4 Jan 2021 in cs.LG

Abstract: In this paper, we propose a ML method to learn how to solve a generic constrained continuous optimization problem. To the best of our knowledge, the generic methods that learn to optimize, focus on unconstrained optimization problems and those dealing with constrained problems are not easy-to-generalize. This approach is quite useful in optimization tasks where the problem's parameters constantly change and require resolving the optimization task per parameter update. In such problems, the computational complexity of optimization algorithms such as gradient descent or interior point method preclude near-optimal designs in real-time applications. In this paper, we propose an unsupervised deep learning (DL) solution for solving constrained optimization problems in real-time by relegating the main computation load to offline training phase. This paper's main contribution is proposing a method for enforcing the equality and inequality constraints to the DL-generated solutions for generic optimization tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.