Papers
Topics
Authors
Recent
2000 character limit reached

Biologically Inspired Hexagonal Deep Learning for Hexagonal Image Generation

Published 1 Jan 2021 in cs.CV, cs.LG, and eess.IV | (2101.00337v3)

Abstract: Whereas conventional state-of-the-art image processing systems of recording and output devices almost exclusively utilize square arranged methods, biological models, however, suggest an alternative, evolutionarily-based structure. Inspired by the human visual perception system, hexagonal image processing in the context of machine learning offers a number of key advantages that can benefit both researchers and users alike. The hexagonal deep learning framework Hexnet leveraged in this contribution serves therefore the generation of hexagonal images by utilizing hexagonal deep neural networks (H-DNN). As the results of our created test environment show, the proposed models can surpass current approaches of conventional image generation. While resulting in a reduction of the models' complexity in the form of trainable parameters, they furthermore allow an increase of test rates in comparison to their square counterparts.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.