Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BANG: Bridging Autoregressive and Non-autoregressive Generation with Large Scale Pretraining (2012.15525v3)

Published 31 Dec 2020 in cs.CL

Abstract: In this paper, we propose BANG, a new pretraining model to Bridge the gap between Autoregressive (AR) and Non-autoregressive (NAR) Generation. AR and NAR generation can be uniformly regarded as to what extent previous tokens can be attended, and BANG bridges AR and NAR generation by designing a novel model structure for large-scale pretraining. The pretrained BANG model can simultaneously support AR, NAR and semi-NAR generation to meet different requirements. Experiments on question generation (SQuAD 1.1), summarization (XSum) and dialogue generation (PersonaChat) show that BANG improves NAR and semi-NAR performance significantly as well as attaining comparable performance with strong AR pretrained models. Compared with the semi-NAR strong baselines, BANG achieves absolute improvements of 14.01 and 5.24 in the overall scores of SQuAD 1.1 and XSum, respectively. In addition, BANG achieves absolute improvements of 10.73, 6.39 and 5.90 in the overall scores of SQuAD, XSUM and PersonaChat respectively compared with the strong NAR baselines.

Citations (46)

Summary

We haven't generated a summary for this paper yet.