Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Synthetic Data Improves Neural Machine Translation with Knowledge Distillation (2012.15455v3)

Published 31 Dec 2020 in cs.CL

Abstract: This paper explores augmenting monolingual data for knowledge distillation in neural machine translation. Source language monolingual text can be incorporated as a forward translation. Interestingly, we find the best way to incorporate target language monolingual text is to translate it to the source language and round-trip translate it back to the target language, resulting in a fully synthetic corpus. We find that combining monolingual data from both source and target languages yields better performance than a corpus twice as large only in one language. Moreover, experiments reveal that the improvement depends upon the provenance of the test set. If the test set was originally in the source language (with the target side written by translators), then forward translating source monolingual data matters. If the test set was originally in the target language (with the source written by translators), then incorporating target monolingual data matters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alham Fikri Aji (94 papers)
  2. Kenneth Heafield (24 papers)
Citations (2)