Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Sindhi Word Segmentation using Subword Representation Learning and Position-aware Self-attention (2012.15079v2)

Published 30 Dec 2020 in cs.CL and cs.LG

Abstract: Sindhi word segmentation is a challenging task due to space omission and insertion issues. The Sindhi language itself adds to this complexity. It's cursive and consists of characters with inherent joining and non-joining properties, independent of word boundaries. Existing Sindhi word segmentation methods rely on designing and combining hand-crafted features. However, these methods have limitations, such as difficulty handling out-of-vocabulary words, limited robustness for other languages, and inefficiency with large amounts of noisy or raw text. Neural network-based models, in contrast, can automatically capture word boundary information without requiring prior knowledge. In this paper, we propose a Subword-Guided Neural Word Segmenter (SGNWS) that addresses word segmentation as a sequence labeling task. The SGNWS model incorporates subword representation learning through a bidirectional long short-term memory encoder, position-aware self-attention, and a conditional random field. Our empirical results demonstrate that the SGNWS model achieves state-of-the-art performance in Sindhi word segmentation on six datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets