Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Urdu Word Segmentation using Conditional Random Fields (CRFs) (1806.05432v1)

Published 14 Jun 2018 in cs.CL

Abstract: State-of-the-art Natural Language Processing algorithms rely heavily on efficient word segmentation. Urdu is amongst languages for which word segmentation is a complex task as it exhibits space omission as well as space insertion issues. This is partly due to the Arabic script which although cursive in nature, consists of characters that have inherent joining and non-joining attributes regardless of word boundary. This paper presents a word segmentation system for Urdu which uses a Conditional Random Field sequence modeler with orthographic, linguistic and morphological features. Our proposed model automatically learns to predict white space as word boundary as well as Zero Width Non-Joiner (ZWNJ) as sub-word boundary. Using a manually annotated corpus, our model achieves F1 score of 0.97 for word boundary identification and 0.85 for sub-word boundary identification tasks. We have made our code and corpus publicly available to make our results reproducible.

Citations (15)

Summary

We haven't generated a summary for this paper yet.