Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PMGT-VR: A decentralized proximal-gradient algorithmic framework with variance reduction (2012.15010v2)

Published 30 Dec 2020 in math.OC and cs.AI

Abstract: This paper considers the decentralized composite optimization problem. We propose a novel decentralized variance-reduction proximal-gradient algorithmic framework, called PMGT-VR, which is based on a combination of several techniques including multi-consensus, gradient tracking, and variance reduction. The proposed framework relies on an imitation of centralized algorithms and we demonstrate that algorithms under this framework achieve convergence rates similar to that of their centralized counterparts. We also describe and analyze two representative algorithms, PMGT-SAGA and PMGT-LSVRG, and compare them to existing state-of-the-art proximal algorithms. To the best of our knowledge, PMGT-VR is the first linearly convergent decentralized stochastic algorithm that can solve decentralized composite optimization problems. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithms.

Citations (14)

Summary

We haven't generated a summary for this paper yet.