A master equation incorporating the system-environment correlations present in the joint equilibrium state (2012.14853v2)
Abstract: We present a general master equation, correct to second order in the system-environment coupling strength, that takes into account the initial system-environment correlations. We assume that the system and its environment are in a joint thermal equilibrium state, and thereafter a unitary operation is performed to prepare the desired initial system state, with the system Hamiltonian possibly changing thereafter as well. We show that the effect of the initial correlations shows up in the second-order master equation as an additional term, similar in form to the usual second-order term describing relaxation and decoherence in quantum systems. We apply this master equation to a generalization of the paradigmatic spin-boson model, namely a collection of two-level systems interacting with a common environment of harmonic oscillators, as well as a collection of two-level systems interacting with a common spin environment. We demonstrate that, in general, the initial system-environment correlations need to be accounted for in order to accurately obtain the system dynamics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.