Papers
Topics
Authors
Recent
2000 character limit reached

Lifelong Learning in Multi-Armed Bandits

Published 28 Dec 2020 in cs.LG and stat.ML | (2012.14264v1)

Abstract: Continuously learning and leveraging the knowledge accumulated from prior tasks in order to improve future performance is a long standing machine learning problem. In this paper, we study the problem in the multi-armed bandit framework with the objective to minimize the total regret incurred over a series of tasks. While most bandit algorithms are designed to have a low worst-case regret, we examine here the average regret over bandit instances drawn from some prior distribution which may change over time. We specifically focus on confidence interval tuning of UCB algorithms. We propose a bandit over bandit approach with greedy algorithms and we perform extensive experimental evaluations in both stationary and non-stationary environments. We further apply our solution to the mortal bandit problem, showing empirical improvement over previous work.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.