Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Adversarial Attack to Object Detection

Published 26 Dec 2020 in cs.CV | (2012.13692v1)

Abstract: Adversarial examples have gained tons of attention in recent years. Many adversarial attacks have been proposed to attack image classifiers, but few work shift attention to object detectors. In this paper, we propose Sparse Adversarial Attack (SAA) which enables adversaries to perform effective evasion attack on detectors with bounded \emph{l$_{0}$} norm perturbation. We select the fragile position of the image and designed evasion loss function for the task. Experiment results on YOLOv4 and FasterRCNN reveal the effectiveness of our method. In addition, our SAA shows great transferability across different detectors in the black-box attack setting. Codes are available at \emph{https://github.com/THUrssq/Tianchi04}.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.