Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Coordinated Robot Motions: End-to-End Learning of Motion Policies on Transform Trees (2012.13457v2)

Published 24 Dec 2020 in cs.RO and cs.LG

Abstract: Generating robot motion that fulfills multiple tasks simultaneously is challenging due to the geometric constraints imposed by the robot. In this paper, we propose to solve multi-task problems through learning structured policies from human demonstrations. Our structured policy is inspired by RMPflow, a framework for combining subtask policies on different spaces. The policy structure provides the user an interface to 1) specifying the spaces that are directly relevant to the completion of the tasks, and 2) designing policies for certain tasks that do not need to be learned. We derive an end-to-end learning objective function that is suitable for the multi-task problem, emphasizing the deviation of motions on task spaces. Furthermore, the motion generated from the learned policy class is guaranteed to be stable. We validate the effectiveness of our proposed learning framework through qualitative and quantitative evaluations on three robotic tasks on a 7-DOF Rethink Sawyer robot.

Citations (3)

Summary

We haven't generated a summary for this paper yet.