Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Active Learning Method for Diabetic Retinopathy Classification with Uncertainty Quantification (2012.13325v2)

Published 24 Dec 2020 in cs.LG

Abstract: In recent years, deep learning (DL) techniques have provided state-of-the-art performance on different medical imaging tasks. However, the availability of good quality annotated medical data is very challenging due to involved time constraints and the availability of expert annotators, e.g., radiologists. In addition, DL is data-hungry and their training requires extensive computational resources. Another problem with DL is their black-box nature and lack of transparency on its inner working which inhibits causal understanding and reasoning. In this paper, we jointly address these challenges by proposing a hybrid model, which uses a Bayesian convolutional neural network (BCNN) for uncertainty quantification, and an active learning approach for annotating the unlabelled data. The BCNN is used as a feature descriptor and these features are then used for training a model, in an active learning setting. We evaluate the proposed framework for diabetic retinopathy classification problem and have achieved state-of-the-art performance in terms of different metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Muhammad Ahtazaz Ahsan (4 papers)
  2. Adnan Qayyum (25 papers)
  3. Junaid Qadir (110 papers)
  4. Adeel Razi (33 papers)
Citations (16)