Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

First-Kind Boundary Integral Equations for the Dirac Operator in 3D Lipschitz Domains (2012.11994v2)

Published 22 Dec 2020 in math.AP and math.DG

Abstract: We develop novel first-kind boundary integral equations for Euclidean Dirac operators in 3D Lipschitz domains comprising square-integrable potentials and involving only weakly singular kernels. Generalized Garding inequalities are derived and we establish that the obtained boundary integral operators are Fredholm of index zero. Their finite dimensional kernels are characterized and we show that their dimension is equal to the number of topological invariants of the domain's boundary, in other words to the sum of its Betti numbers. This is explained by the fundamental discovery that the associated bilinear forms agree with those induced by the 2D surface Dirac operators for H-1/2 surface de Rham Hilbert complexes whose underlying inner-products are the non-local inner products defined through the classical single-layer boundary integral operators for the Laplacian. Decay conditions for well-posedness in natural energy spaces of the Dirac system in unbounded exterior domains are also presented.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.