Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Imitation Advantage Learning (2012.11989v1)

Published 22 Dec 2020 in cs.LG

Abstract: Self-imitation learning is a Reinforcement Learning (RL) method that encourages actions whose returns were higher than expected, which helps in hard exploration and sparse reward problems. It was shown to improve the performance of on-policy actor-critic methods in several discrete control tasks. Nevertheless, applying self-imitation to the mostly action-value based off-policy RL methods is not straightforward. We propose SAIL, a novel generalization of self-imitation learning for off-policy RL, based on a modification of the BeLLMan optimality operator that we connect to Advantage Learning. Crucially, our method mitigates the problem of stale returns by choosing the most optimistic return estimate between the observed return and the current action-value for self-imitation. We demonstrate the empirical effectiveness of SAIL on the Arcade Learning Environment, with a focus on hard exploration games.

Citations (20)

Summary

We haven't generated a summary for this paper yet.