Papers
Topics
Authors
Recent
Search
2000 character limit reached

NetReAct: Interactive Learning for Network Summarization

Published 22 Dec 2020 in cs.LG and cs.AI | (2012.11821v1)

Abstract: Generating useful network summaries is a challenging and important problem with several applications like sensemaking, visualization, and compression. However, most of the current work in this space do not take human feedback into account while generating summaries. Consider an intelligence analysis scenario, where the analyst is exploring a similarity network between documents. The analyst can express her agreement/disagreement with the visualization of the network summary via iterative feedback, e.g. closing or moving documents ("nodes") together. How can we use this feedback to improve the network summary quality? In this paper, we present NetReAct, a novel interactive network summarization algorithm which supports the visualization of networks induced by text corpora to perform sensemaking. NetReAct incorporates human feedback with reinforcement learning to summarize and visualize document networks. Using scenarios from two datasets, we show how NetReAct is successful in generating high-quality summaries and visualizations that reveal hidden patterns better than other non-trivial baselines.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.