Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Liouvillian solutions for second order linear differential equations with Laurent polynomial coefficient (2012.11795v2)

Published 22 Dec 2020 in math.CA, math-ph, and math.MP

Abstract: This paper is devoted to a complete parametric study of Liouvillian solutions of the general trace-free second order differential equation with a Laurent polynomial coefficient. This family of equations, for fixed orders at $0$ and $\infty$ of the Laurent polynomial, is seen as an affine algebraic variety. We proof that the set of Picard-Vessiot integrable differential equations in the family is an enumerable union of algebraic subvarieties. We compute explicitly the algebraic equations of its components. We give some applications to well known subfamilies as the doubly confluent and biconfluent Heun equations, and to the theory of algebraically solvable potentials of Shr\"odinger equations. Also, as an auxiliary tool, we improve a previously known criterium for second order linear differential equations to admit a polynomial solution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.