Papers
Topics
Authors
Recent
2000 character limit reached

Design Rule Checking with a CNN Based Feature Extractor

Published 21 Dec 2020 in cs.LG | (2012.11510v1)

Abstract: Design rule checking (DRC) is getting increasingly complex in advanced nodes technologies. It would be highly desirable to have a fast interactive DRC engine that could be used during layout. In this work, we establish the proof of feasibility for such an engine. The proposed model consists of a convolutional neural network (CNN) trained to detect DRC violations. The model was trained with artificial data that was derived from a set of $50$ SRAM designs. The focus in this demonstration was metal 1 rules. Using this solution, we can detect multiple DRC violations 32x faster than Boolean checkers with an accuracy of up to 92. The proposed solution can be easily expanded to a complete rule set.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.