Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Design Rule Checking with a CNN Based Feature Extractor (2012.11510v1)

Published 21 Dec 2020 in cs.LG

Abstract: Design rule checking (DRC) is getting increasingly complex in advanced nodes technologies. It would be highly desirable to have a fast interactive DRC engine that could be used during layout. In this work, we establish the proof of feasibility for such an engine. The proposed model consists of a convolutional neural network (CNN) trained to detect DRC violations. The model was trained with artificial data that was derived from a set of $50$ SRAM designs. The focus in this demonstration was metal 1 rules. Using this solution, we can detect multiple DRC violations 32x faster than Boolean checkers with an accuracy of up to 92. The proposed solution can be easily expanded to a complete rule set.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.