Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Policy Transforms and Learning Optimal Policies (2012.11046v1)

Published 20 Dec 2020 in econ.EM

Abstract: We study the problem of choosing optimal policy rules in uncertain environments using models that may be incomplete and/or partially identified. We consider a policymaker who wishes to choose a policy to maximize a particular counterfactual quantity called a policy transform. We characterize learnability of a set of policy options by the existence of a decision rule that closely approximates the maximin optimal value of the policy transform with high probability. Sufficient conditions are provided for the existence of such a rule. However, learnability of an optimal policy is an ex-ante notion (i.e. before observing a sample), and so ex-post (i.e. after observing a sample) theoretical guarantees for certain policy rules are also provided. Our entire approach is applicable when the distribution of unobservables is not parametrically specified, although we discuss how semiparametric restrictions can be used. Finally, we show possible applications of the procedure to a simultaneous discrete choice example and a program evaluation example.

Summary

We haven't generated a summary for this paper yet.