Papers
Topics
Authors
Recent
2000 character limit reached

MA-Unet: An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation

Published 20 Dec 2020 in eess.IV and cs.CV | (2012.10952v1)

Abstract: Although convolutional neural networks (CNNs) are promoting the development of medical image semantic segmentation, the standard model still has some shortcomings. First, the feature mapping from the encoder and decoder sub-networks in the skip connection operation has a large semantic difference. Second, the remote feature dependence is not effectively modeled. Third, the global context information of different scales is ignored. In this paper, we try to eliminate semantic ambiguity in skip connection operations by adding attention gates (AGs), and use attention mechanisms to combine local features with their corresponding global dependencies, explicitly model the dependencies between channels and use multi-scale predictive fusion to utilize global information at different scales. Compared with other state-of-the-art segmentation networks, our model obtains better segmentation performance while introducing fewer parameters.

Citations (53)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.