Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Empirical Investigation of Command-Line Customization (2012.10206v2)

Published 18 Dec 2020 in cs.SE

Abstract: The interactive command line, also known as the shell, is a prominent mechanism used extensively by a wide range of software professionals (engineers, system administrators, data scientists, etc.). Shell customizations can therefore provide insight into the tasks they repeatedly perform, how well the standard environment supports those tasks, and ways in which the environment could be productively extended or modified. To characterize the patterns and complexities of command-line customization, we mined the collective knowledge of command-line users by analyzing more than 2.2 million shell alias definitions found on GitHub. Shell aliases allow command-line users to customize their environment by defining arbitrarily complex command substitutions. Using inductive coding methods, we found three types of aliases that each enable a number of customization practices: Shortcuts (for nicknaming commands, abbreviating subcommands, and bookmarking locations), Modifications (for substituting commands, overriding defaults, colorizing output, and elevating privilege), and Scripts (for transforming data and chaining subcommands). We conjecture that identifying common customization practices can point to particular usability issues within command-line programs, and that a deeper understanding of these practices can support researchers and tool developers in designing better user experiences. In addition to our analysis, we provide an extensive reproducibility package in the form of a curated dataset together with well-documented computational notebooks enabling further knowledge discovery and a basis for learning approaches to improve command-line workflows.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.