Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Detection of Anomalies in a Time Series Data using InfluxDB and Python (2012.08439v1)

Published 15 Dec 2020 in cs.LG and stat.ML

Abstract: Analysis of water and environmental data is an important aspect of many intelligent water and environmental system applications where inference from such analysis plays a significant role in decision making. Quite often these data that are collected through sensible sensors can be anomalous due to different reasons such as systems breakdown, malfunctioning of sensor detectors, and more. Regardless of their root causes, such data severely affect the results of the subsequent analysis. This paper demonstrates data cleaning and preparation for time-series data and further proposes cost-sensitive machine learning algorithms as a solution to detect anomalous data points in time-series data. The following models: Logistic Regression, Random Forest, Support Vector Machines have been modified to support the cost-sensitive learning which penalizes misclassified samples thereby minimizing the total misclassification cost. Our results showed that Random Forest outperformed the rest of the models at predicting the positive class (i.e anomalies). Applying predictive model improvement techniques like data oversampling seems to provide little or no improvement to the Random Forest model. Interestingly, with recursive feature elimination, we achieved a better model performance thereby reducing the dimensions in the data. Finally, with Influxdb and Kapacitor the data was ingested and streamed to generate new data points to further evaluate the model performance on unseen data, this will allow for early recognition of undesirable changes in the drinking water quality and will enable the water supply companies to rectify on a timely basis whatever undesirable changes abound.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.