Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Understanding Type Ia Supernova Distance Biases by Simulating Spectral Variations (2012.07811v1)

Published 14 Dec 2020 in astro-ph.CO

Abstract: In the next decade, transient searches from the Vera C. Rubin Observatory and the Nancy Grace Roman Space Telescope will increase the sample of known Type Ia Supernovae (SN Ia) from $\sim103$ to $105$. With this reduction of statistical uncertainties on cosmological measurements, new methods are needed to reduce systematic uncertainties. Characterizing the underlying spectroscopic evolution of SN Ia remains a major systematic uncertainty in current cosmological analyses, motivating a new simulation tool for the next era of SN Ia cosmology: Build Your Own Spectral Energy Distribution (BYOSED). BYOSED is used within the SNANA framework to simulate light curves by applying spectral variations to model SEDs, enabling flexible testing of possible systematic shifts in SN Ia distance measurements. We test the framework by comparing a nominal Roman SN Ia survey simulation using a baseline SED model to simulations using SEDs perturbed with BYOSED, and investigate the impact of neglecting specific SED features in the analysis. These features include semi-empirical models of two possible, predicted relationships: between SN ejecta velocity and light curve observables, and a redshift-dependent relationship between SN Hubble residuals and host galaxy mass. We analyze each BYOSED simulation using the SALT2 & BBC framework, and estimate changes in the measured value of the dark energy equation-of-state parameter, $w$. We find a difference of $\Delta w=-0.023$ for SN velocity and $\Delta w=0.021$ for redshift-evolving host mass when compared to simulations without these features. By using BYOSED for SN Ia cosmology simulations, future analyses (e.g., Rubin and Roman SN Ia samples) will have greater flexibility to constrain or reduce such SN Ia modeling uncertainties.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.