Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 20 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Evolutionary learning of interpretable decision trees (2012.07723v3)

Published 14 Dec 2020 in cs.LG

Abstract: Reinforcement learning techniques achieved human-level performance in several tasks in the last decade. However, in recent years, the need for interpretability emerged: we want to be able to understand how a system works and the reasons behind its decisions. Not only we need interpretability to assess the safety of the produced systems, we also need it to extract knowledge about unknown problems. While some techniques that optimize decision trees for reinforcement learning do exist, they usually employ greedy algorithms or they do not exploit the rewards given by the environment. This means that these techniques may easily get stuck in local optima. In this work, we propose a novel approach to interpretable reinforcement learning that uses decision trees. We present a two-level optimization scheme that combines the advantages of evolutionary algorithms with the advantages of Q-learning. This way we decompose the problem into two sub-problems: the problem of finding a meaningful and useful decomposition of the state space, and the problem of associating an action to each state. We test the proposed method on three well-known reinforcement learning benchmarks, on which it results competitive with respect to the state-of-the-art in both performance and interpretability. Finally, we perform an ablation study that confirms that using the two-level optimization scheme gives a boost in performance in non-trivial environments with respect to a one-layer optimization technique.

Citations (34)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.