Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Quality Diversity Evolutionary Learning of Decision Trees (2208.12758v1)

Published 17 Aug 2022 in cs.NE, cs.AI, and cs.LG

Abstract: Addressing the need for explainable Machine Learning has emerged as one of the most important research directions in modern AI. While the current dominant paradigm in the field is based on black-box models, typically in the form of (deep) neural networks, these models lack direct interpretability for human users, i.e., their outcomes (and, even more so, their inner working) are opaque and hard to understand. This is hindering the adoption of AI in safety-critical applications, where high interests are at stake. In these applications, explainable by design models, such as decision trees, may be more suitable, as they provide interpretability. Recent works have proposed the hybridization of decision trees and Reinforcement Learning, to combine the advantages of the two approaches. So far, however, these works have focused on the optimization of those hybrid models. Here, we apply MAP-Elites for diversifying hybrid models over a feature space that captures both the model complexity and its behavioral variability. We apply our method on two well-known control problems from the OpenAI Gym library, on which we discuss the "illumination" patterns projected by MAP-Elites, comparing its results against existing similar approaches.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com