Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Picard modular forms and the cohomology of local systems on a Picard modular surface (2012.07673v1)

Published 14 Dec 2020 in math.AG and math.NT

Abstract: We formulate a detailed conjectural Eichler-Shimura type formula for the cohomology of local systems on a Picard modular surface associated to the group of unitary similitudes $\mathrm{GU}(2,1,\mathbb{Q}(\sqrt{-3}))$. The formula is based on counting points over finite fields on curves of genus three which are cyclic triple covers of the projective line. Assuming the conjecture we are able to calculate traces of Hecke operators on spaces of Picard modular forms. We provide ample evidence for the conjectural formula. Along the way we prove new results on characteristic polynomials of Frobenius acting on the first cohomology group of cyclic triple covers of any genus, dimension formulas for spaces of Picard modular forms and formulas for the numerical Euler characteristics of the local systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube