Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From #Jobsearch to #Mask: Improving COVID-19 Cascade Prediction with Spillover Effects (2012.07088v4)

Published 13 Dec 2020 in cs.SI and cs.CY

Abstract: An information outbreak occurs on social media along with the COVID-19 pandemic and leads to infodemic. Predicting the popularity of online content, known as cascade prediction, allows for not only catching in advance hot information that deserves attention, but also identifying false information that will widely spread and require quick response to mitigate its impact. Among the various information diffusion patterns leveraged in previous works, the spillover effect of the information exposed to users on their decision to participate in diffusing certain information is still not studied. In this paper, we focus on the diffusion of information related to COVID-19 preventive measures. Through our collected Twitter dataset, we validated the existence of this spillover effect. Building on the finding, we proposed extensions to three cascade prediction methods based on Graph Neural Networks (GNNs). Experiments conducted on our dataset demonstrated that the use of the identified spillover effect significantly improves the state-of-the-art GNNs methods in predicting the popularity of not only preventive measure messages, but also other COVID-19 related messages.

Summary

We haven't generated a summary for this paper yet.