Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

C2C-GenDA: Cluster-to-Cluster Generation for Data Augmentation of Slot Filling (2012.07004v1)

Published 13 Dec 2020 in cs.CL and cs.AI

Abstract: Slot filling, a fundamental module of spoken language understanding, often suffers from insufficient quantity and diversity of training data. To remedy this, we propose a novel Cluster-to-Cluster generation framework for Data Augmentation (DA), named C2C-GenDA. It enlarges the training set by reconstructing existing utterances into alternative expressions while keeping semantic. Different from previous DA works that reconstruct utterances one by one independently, C2C-GenDA jointly encodes multiple existing utterances of the same semantics and simultaneously decodes multiple unseen expressions. Jointly generating multiple new utterances allows to consider the relations between generated instances and encourages diversity. Besides, encoding multiple existing utterances endows C2C with a wider view of existing expressions, helping to reduce generation that duplicates existing data. Experiments on ATIS and Snips datasets show that instances augmented by C2C-GenDA improve slot filling by 7.99 (11.9%) and 5.76 (13.6%) F-scores respectively, when there are only hundreds of training utterances.

Citations (19)

Summary

We haven't generated a summary for this paper yet.