Papers
Topics
Authors
Recent
2000 character limit reached

How to Train PointGoal Navigation Agents on a (Sample and Compute) Budget

Published 11 Dec 2020 in cs.CV, cs.AI, cs.LG, and cs.RO | (2012.06117v1)

Abstract: PointGoal navigation has seen significant recent interest and progress, spurred on by the Habitat platform and associated challenge. In this paper, we study PointGoal navigation under both a sample budget (75 million frames) and a compute budget (1 GPU for 1 day). We conduct an extensive set of experiments, cumulatively totaling over 50,000 GPU-hours, that let us identify and discuss a number of ostensibly minor but significant design choices -- the advantage estimation procedure (a key component in training), visual encoder architecture, and a seemingly minor hyper-parameter change. Overall, these design choices to lead considerable and consistent improvements over the baselines present in Savva et al. Under a sample budget, performance for RGB-D agents improves 8 SPL on Gibson (14% relative improvement) and 20 SPL on Matterport3D (38% relative improvement). Under a compute budget, performance for RGB-D agents improves by 19 SPL on Gibson (32% relative improvement) and 35 SPL on Matterport3D (220% relative improvement). We hope our findings and recommendations will make serve to make the community's experiments more efficient.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.