Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making Cross-Domain Recommendations by Associating Disjoint Users and Items Through the Affective Aware Pseudo Association Method (2012.05982v3)

Published 10 Dec 2020 in cs.IR

Abstract: This paper utilizes an ingenious text-based affective aware pseudo association method (AAPAM) to link disjoint users and items across different information domains and leverage them to make cross-domain content-based and collaborative filtering recommendations. This paper demonstrates that the AAPAM method could seamlessly join different information domain datasets to act as one without any additional cross-domain information retrieval protocols. Besides making cross-domain recommendations, the benefit of joining datasets from different information domains through AAPAM is that it eradicates cold start issues while making serendipitous recommendations.

Summary

We haven't generated a summary for this paper yet.