Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-Delay Differential Equations: A Taylor Expansion Approach (2012.05005v1)

Published 9 Dec 2020 in math.DS and math.PR

Abstract: It is already well-understood that many delay differential equations with only a single constant delay exhibit a change in stability according to the value of the delay in relation to a critical delay value. Finding a formula for the critical delay is important to understanding the dynamics of delayed systems and is often simple to obtain when the system only has a single constant delay. However, if we consider a system with multiple constant delays, there is no known way to obtain such a formula that determines for what values of the delays a change in stability occurs. In this paper, we present some single-delay approximations to a multi-delay system obtained via a Taylor expansion as well as formulas for their critical delays which are used to approximate where the change in stability occurs in the multi-delay system. We determine when our approximations perform well and we give extra analytical and numerical attention to the two-delay and three-delay settings.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.