Papers
Topics
Authors
Recent
2000 character limit reached

Corrector estimates for higher-order linearizations in stochastic homogenization of nonlinear uniformly elliptic equations

Published 9 Dec 2020 in math.AP and math.PR | (2012.04972v1)

Abstract: Corrector estimates constitute a key ingredient in the derivation of optimal convergence rates via two-scale expansion techniques in homogenization theory of random uniformly elliptic equations. The present work follows up - in terms of corrector estimates - on the recent work of Fischer and Neukamm (arXiv:1908.02273) which provides a quantitative stochastic homogenization theory of nonlinear uniformly elliptic equations under a spectral gap assumption. We establish optimal-order estimates (with respect to the scaling in the ratio between the microscopic and the macroscopic scale) for higher-order linearized correctors. A rather straightforward consequence of the corrector estimates is the higher-order regularity of the associated homogenized monotone operator.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.