Papers
Topics
Authors
Recent
2000 character limit reached

ESAD: End-to-end Deep Semi-supervised Anomaly Detection

Published 9 Dec 2020 in cs.LG and cs.CV | (2012.04905v3)

Abstract: This paper explores semi-supervised anomaly detection, a more practical setting for anomaly detection where a small additional set of labeled samples are provided. We propose a new KL-divergence based objective function for semi-supervised anomaly detection, and show that two factors: the mutual information between the data and latent representations, and the entropy of latent representations, constitute an integral objective function for anomaly detection. To resolve the contradiction in simultaneously optimizing the two factors, we propose a novel encoder-decoder-encoder structure, with the first encoder focusing on optimizing the mutual information and the second encoder focusing on optimizing the entropy. The two encoders are enforced to share similar encoding with a consistent constraint on their latent representations. Extensive experiments have revealed that the proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets, including medical diagnosis and several classic anomaly detection benchmarks.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.