Papers
Topics
Authors
Recent
2000 character limit reached

Space-Filling Subset Selection for an Electric Battery Model

Published 7 Dec 2020 in cs.LG, cs.SY, and eess.SY | (2012.03541v1)

Abstract: Dynamic models of the battery performance are an essential tool throughout the development process of automotive drive trains. The present study introduces a method making a large data set suitable for modeling the electrical impedance. When obtaining data-driven models, a usual assumption is that more observations produce better models. However, real driving data on the battery's behavior represent a strongly non-uniform excitation of the system, which negatively affects the modeling. For that reason, a subset selection of the available data was developed. It aims at building accurate nonlinear autoregressive exogenous (NARX) models more efficiently. The algorithm selects those dynamic data points that fill the input space of the nonlinear model more homogeneously. It is shown, that this reduction of the training data leads to a higher model quality in comparison to a random subset and a faster training compared to modeling using all data points.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.