Papers
Topics
Authors
Recent
2000 character limit reached

Cross-Domain Sentiment Classification with In-Domain Contrastive Learning

Published 5 Dec 2020 in cs.CL and cs.LG | (2012.02943v1)

Abstract: Contrastive learning (CL) has been successful as a powerful representation learning method. In this paper, we propose a contrastive learning framework for cross-domain sentiment classification. We aim to induce domain invariant optimal classifiers rather than distribution matching. To this end, we introduce in-domain contrastive learning and entropy minimization. Also, we find through ablation studies that these two techniques behaviour differently in case of large label distribution shift and conclude that the best practice is to choose one of them adaptively according to label distribution shift. The new state-of-the-art results our model achieves on standard benchmarks show the efficacy of the proposed method.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.