Selective Inference for Hierarchical Clustering (2012.02936v3)
Abstract: Classical tests for a difference in means control the type I error rate when the groups are defined a priori. However, when the groups are instead defined via clustering, then applying a classical test yields an extremely inflated type I error rate. Notably, this problem persists even if two separate and independent data sets are used to define the groups and to test for a difference in their means. To address this problem, in this paper, we propose a selective inference approach to test for a difference in means between two clusters. Our procedure controls the selective type I error rate by accounting for the fact that the choice of null hypothesis was made based on the data. We describe how to efficiently compute exact p-values for clusters obtained using agglomerative hierarchical clustering with many commonly-used linkages. We apply our method to simulated data and to single-cell RNA-sequencing data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.