Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tree-Values: selective inference for regression trees (2106.07816v2)

Published 15 Jun 2021 in stat.ME and stat.ML

Abstract: We consider conducting inference on the output of the Classification and Regression Tree (CART) [Breiman et al., 1984] algorithm. A naive approach to inference that does not account for the fact that the tree was estimated from the data will not achieve standard guarantees, such as Type 1 error rate control and nominal coverage. Thus, we propose a selective inference framework for conducting inference on a fitted CART tree. In a nutshell, we condition on the fact that the tree was estimated from the data. We propose a test for the difference in the mean response between a pair of terminal nodes that controls the selective Type 1 error rate, and a confidence interval for the mean response within a single terminal node that attains the nominal selective coverage. Efficient algorithms for computing the necessary conditioning sets are provided. We apply these methods in simulation and to a dataset involving the association between portion control interventions and caloric intake.

Citations (17)

Summary

We haven't generated a summary for this paper yet.