Papers
Topics
Authors
Recent
2000 character limit reached

The Chow $t$-structure on the $\infty$-category of motivic spectra

Published 4 Dec 2020 in math.KT, math.AG, and math.AT | (2012.02687v3)

Abstract: We define the Chow $t$-structure on the $\infty$-category of motivic spectra $SH(k)$ over an arbitrary base field $k$. We identify the heart of this $t$-structure $SH(k){c\heartsuit}$ when the exponential characteristic of $k$ is inverted. Restricting to the cellular subcategory, we identify the Chow heart $SH(k){cell, c\heartsuit}$ as the category of even graded $MU_{2*}MU$-comodules. Furthermore, we show that the $\infty$-category of modules over the Chow truncated sphere spectrum is algebraic. Our results generalize the ones in Gheorghe--Wang--Xu in three aspects: To integral results; To all base fields other than just $C$; To the entire $\infty$-category of motivic spectra $SH(k)$, rather than a subcategory containing only certain cellular objects. We also discuss a strategy for computing motivic stable homotopy groups of (p-completed) spheres over an arbitrary base field $k$ using the Postnikov tower associated to the Chow $t$-structure and the motivic Adams spectral sequences over $k$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.