Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Biased Programmers? Or Biased Data? A Field Experiment in Operationalizing AI Ethics (2012.02394v1)

Published 4 Dec 2020 in econ.GN, cs.CY, and q-fin.EC

Abstract: Why do biased predictions arise? What interventions can prevent them? We evaluate 8.2 million algorithmic predictions of math performance from $\approx$400 AI engineers, each of whom developed an algorithm under a randomly assigned experimental condition. Our treatment arms modified programmers' incentives, training data, awareness, and/or technical knowledge of AI ethics. We then assess out-of-sample predictions from their algorithms using randomized audit manipulations of algorithm inputs and ground-truth math performance for 20K subjects. We find that biased predictions are mostly caused by biased training data. However, one-third of the benefit of better training data comes through a novel economic mechanism: Engineers exert greater effort and are more responsive to incentives when given better training data. We also assess how performance varies with programmers' demographic characteristics, and their performance on a psychological test of implicit bias (IAT) concerning gender and careers. We find no evidence that female, minority and low-IAT engineers exhibit lower bias or discrimination in their code. However, we do find that prediction errors are correlated within demographic groups, which creates performance improvements through cross-demographic averaging. Finally, we quantify the benefits and tradeoffs of practical managerial or policy interventions such as technical advice, simple reminders, and improved incentives for decreasing algorithmic bias.

Citations (89)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com