Papers
Topics
Authors
Recent
2000 character limit reached

Self-testing maximally-dimensional genuinely entangled subspaces within the stabilizer formalism

Published 2 Dec 2020 in quant-ph | (2012.01164v2)

Abstract: Self-testing was originally introduced as a device-independent method of certification of entangled quantum states and local measurements performed on them. Recently, in [F. Baccari \textit{et al.}, arXiv:2003.02285] the notion of state self-testing has been generalized to entangled subspaces and the first self-testing strategies for exemplary genuinely entangled subspaces have been given. The main aim of our work is to pursue this line of research and to address the question how "large" (in terms of dimension) are genuinely entangled subspaces that can be self-tested, concentrating on the multiqubit stabilizer formalism. To this end, we first introduce a framework allowing to efficiently check whether a given stabilizer subspace is genuinely entangled. Building on it, we then determine the maximal dimension of genuinely entangled subspaces that can be constructed within the stabilizer subspaces and provide an exemplary construction of such maximally-dimensional subspaces for any number of qubits. Third, we construct Bell inequalities that are maximally violated by any entangled state from those subspaces and thus also any mixed states supported on them, and we show these inequalities to be useful for self-testing. Interestingly, our Bell inequalities allow for identification of higher-dimensional face structures in the boundaries of the sets of quantum correlations in the simplest multipartite Bell scenarios in which every observer performs two dichotomic measurements.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.