Papers
Topics
Authors
Recent
Search
2000 character limit reached

Floods Detection in Twitter Text and Images

Published 30 Nov 2020 in cs.CV | (2011.14943v1)

Abstract: In this paper, we present our methods for the MediaEval 2020 Flood Related Multimedia task, which aims to analyze and combine textual and visual content from social media for the detection of real-world flooding events. The task mainly focuses on identifying floods related tweets relevant to a specific area. We propose several schemes to address the challenge. For text-based flood events detection, we use three different methods, relying on Bog of Words (BOW) and an Italian Version of Bert individually and in combination, achieving an F1-score of 0.77%, 0.68%, and 0.70% on the development set, respectively. For the visual analysis, we rely on features extracted via multiple state-of-the-art deep models pre-trained on ImageNet. The extracted features are then used to train multiple individual classifiers whose scores are then combined in a late fusion manner achieving an F1-score of 0.75%. For our mandatory multi-modal run, we combine the classification scores obtained with the best textual and visual schemes in a late fusion manner. Overall, better results are obtained with the multimodal scheme achieving an F1-score of 0.80% on the development set.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.