Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised part representation by Flow Capsules

Published 27 Nov 2020 in cs.CV and cs.LG | (2011.13920v2)

Abstract: Capsule networks aim to parse images into a hierarchy of objects, parts and relations. While promising, they remain limited by an inability to learn effective low level part descriptions. To address this issue we propose a way to learn primary capsule encoders that detect atomic parts from a single image. During training we exploit motion as a powerful perceptual cue for part definition, with an expressive decoder for part generation within a layered image model with occlusion. Experiments demonstrate robust part discovery in the presence of multiple objects, cluttered backgrounds, and occlusion. The part decoder infers the underlying shape masks, effectively filling in occluded regions of the detected shapes. We evaluate FlowCapsules on unsupervised part segmentation and unsupervised image classification.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.