Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generation of In-group Asset Condition Data for Power System Reliability Assessment (2011.12352v3)

Published 24 Nov 2020 in cs.CE

Abstract: In a power system, unlike some critical and standalone assets that are equipped with condition monitoring devices, the conditions of most regular in-group assets are acquired through periodic inspection work. Due to their large quantities, significant amount of manual inspection effort and sometimes data management issues, it is not uncommon to see the asset condition data in a target study area is unavailable or incomplete. Lack of asset condition data undermines the reliability assessment work. To solve this data problem and enhance data availability, this paper explores an unconventional method-generating numerical and non-numerical asset condition data based on condition degradation, condition correlation and categorical distribution models. Empirical knowledge from human experts can also be incorporated in the modeling process. Also, a probabilistic diversification step can be taken to make the generated numerical condition data probabilistic. This method can generate close-to-real asset condition data and has been validated systematically based on two public datasets. An area reliability assessment example based on cables is given to demonstrate the usefulness of this method and its generated data. This method can also be used to conveniently generate hypothetical asset condition data for research purposes.

Summary

We haven't generated a summary for this paper yet.