Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tackling Domain-Specific Winograd Schemas with Knowledge-Based Reasoning and Machine Learning

Published 24 Nov 2020 in cs.CL and cs.AI | (2011.12081v1)

Abstract: The Winograd Schema Challenge (WSC) is a common-sense reasoning task that requires background knowledge. In this paper, we contribute to tackling WSC in four ways. Firstly, we suggest a keyword method to define a restricted domain where distinctive high-level semantic patterns can be found. A thanking domain was defined by key-words, and the data set in this domain is used in our experiments. Secondly, we develop a high-level knowledge-based reasoning method using semantic roles which is based on the method of Sharma [2019]. Thirdly, we propose an ensemble method to combine knowledge-based reasoning and machine learning which shows the best performance in our experiments. As a machine learning method, we used Bidirectional Encoder Representations from Transformers (BERT) [Kocijan et al., 2019]. Lastly, in terms of evaluation, we suggest a "robust" accuracy measurement by modifying that of Trichelair et al. [2018]. As with their switching method, we evaluate a model by considering its performance on trivial variants of each sentence in the test set.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.