Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Discovery of Disentangled Manifolds in GANs (2011.11842v2)

Published 24 Nov 2020 in cs.CV

Abstract: As recent generative models can generate photo-realistic images, people seek to understand the mechanism behind the generation process. Interpretable generation process is beneficial to various image editing applications. In this work, we propose a framework to discover interpretable directions in the latent space given arbitrary pre-trained generative adversarial networks. We propose to learn the transformation from prior one-hot vectors representing different attributes to the latent space used by pre-trained models. Furthermore, we apply a centroid loss function to improve consistency and smoothness while traversing through different directions. We demonstrate the efficacy of the proposed framework on a wide range of datasets. The discovered direction vectors are shown to be visually corresponding to various distinct attributes and thus enable attribute editing.

Citations (7)

Summary

We haven't generated a summary for this paper yet.