Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The axiomatic and the operational approaches to resource theories of magic do not coincide (2011.11651v3)

Published 23 Nov 2020 in quant-ph

Abstract: Stabiliser operations occupy a prominent role in fault-tolerant quantum computing. They are defined operationally: by the use of Clifford gates, Pauli measurements and classical control. These operations can be efficiently simulated on a classical computer, a result which is known as the Gottesman-Knill theorem. However, an additional supply of magic states is enough to promote them to a universal, fault-tolerant model for quantum computing. To quantify the needed resources in terms of magic states, a resource theory of magic has been developed. Stabiliser operations (SO) are considered free within this theory, however they are not the most general class of free operations. From an axiomatic point of view, these are the completely stabiliser-preserving (CSP) channels, defined as those that preserve the convex hull of stabiliser states. It has been an open problem to decide whether these two definitions lead to the same class of operations. In this work, we answer this question in the negative, by constructing an explicit counter-example. This indicates that recently proposed stabiliser-based simulation techniques of CSP maps are strictly more powerful than Gottesman-Knill-like methods. The result is analogous to a well-known fact in entanglement theory, namely that there is a gap between the operationally defined class of local operations and classical communication (LOCC) and the axiomatically defined class of separable channels.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com