Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Convergence of Continuous Constrained Optimization for Structure Learning (2011.11150v4)

Published 23 Nov 2020 in cs.LG and stat.ML

Abstract: Recently, structure learning of directed acyclic graphs (DAGs) has been formulated as a continuous optimization problem by leveraging an algebraic characterization of acyclicity. The constrained problem is solved using the augmented Lagrangian method (ALM) which is often preferred to the quadratic penalty method (QPM) by virtue of its standard convergence result that does not require the penalty coefficient to go to infinity, hence avoiding ill-conditioning. However, the convergence properties of these methods for structure learning, including whether they are guaranteed to return a DAG solution, remain unclear, which might limit their practical applications. In this work, we examine the convergence of ALM and QPM for structure learning in the linear, nonlinear, and confounded cases. We show that the standard convergence result of ALM does not hold in these settings, and demonstrate empirically that its behavior is akin to that of the QPM which is prone to ill-conditioning. We further establish the convergence guarantee of QPM to a DAG solution, under mild conditions. Lastly, we connect our theoretical results with existing approaches to help resolve the convergence issue, and verify our findings in light of an empirical comparison of them.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.