Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data Driven Robust Estimation Methods for Fixed Effects Panel Data Models

Published 22 Nov 2020 in stat.ME | (2011.11123v1)

Abstract: The panel data regression models have gained increasing attention in different areas of research including but not limited to econometrics, environmental sciences, epidemiology, behavioral and social sciences. However, the presence of outlying observations in panel data may often lead to biased and inefficient estimates of the model parameters resulting in unreliable inferences when the least squares (LS) method is applied. We propose extensions of the M-estimation approach with a data-driven selection of tuning parameters to achieve desirable level of robustness against outliers without loss of estimation efficiency. The consistency and asymptotic normality of the proposed estimators have also been proved under some mild regularity conditions. The finite sample properties of the existing and proposed robust estimators have been examined through an extensive simulation study and an application to macroeconomic data. Our findings reveal that the proposed methods often exhibits improved estimation and prediction performances in the presence of outliers and are consistent with the traditional LS method when there is no contamination.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.