Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust statistical inference for the matched net benefit and the matched win ratio using prioritized composite endpoints (2011.10720v1)

Published 21 Nov 2020 in stat.ME

Abstract: As alternatives to the time-to-first-event analysis of composite endpoints, the {\it net benefit} (NB) and the {\it win ratio} (WR) -- which assess treatment effects using prioritized component outcomes based on clinical importance -- have been proposed. However, statistical inference of NB and WR relies on a large-sample assumptions, which can lead to an invalid test statistic and inadequate, unsatisfactory confidence intervals, especially when the sample size is small or the proportion of wins is near 0 or 1. In this paper, we develop a systematic approach to address these limitations in a paired-sample design. We first introduce a new test statistic under the null hypothesis of no treatment difference. Then, we present the formula to calculate the sample size. Finally, we develop the confidence interval estimations of these two estimators. To estimate the confidence intervals, we use the {\it method of variance estimates recovery} (MOVER), that combines two separate individual-proportion confidence intervals into a hybrid interval for the estimand of interest. We assess the performance of the proposed test statistic and MOVER confidence interval estimations through simulation studies. We demonstrate that the MOVER confidence intervals are as good as the large-sample confidence intervals when the sample is large and when the proportions of wins is bounded away from 0 and 1. Moreover, the MOVER intervals outperform their competitors when the sample is small or the proportions are at or near the boundaries 0 and 1. We illustrate the method (and its competitors) using three examples from randomized clinical studies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.